
A Developer’s Guide to Unleashing Your Data
in High-Performance Applications

Marc Jacobs
Director

marcja@lab49.com

http://en.wikipedia.org/wiki/Image:Lab49_logo.png

To make sure that you’re in the right room

http://en.wikipedia.org/wiki/Image:Lab49_logo.png

 From the software developer’s view:

 The basics of distributed caches

▪ What are they? What services do they provide? What
purpose do they serve? How do they function?

 Use cases within financial services

▪ What types of applications benefit from distributed
caches? How can they be integrated in an architecture?

 Performance evaluation and optimization

▪ Methodology, performance variables, some results

 Given there is more content than time, we
will not cover:

 Detailed vendor analysis and feature comparisons

 Detailed inner architecture of distributed caches

 Specifying, deploying, or managing caches

 Reliability and fault tolerance features

 Usage of advanced, product-specific developer
features

YOU ARE:

 A software developer
 …in financial services

 …writing time-sensitive
applications in .NET

 …with little to no exposure to
distributed caches

 …with little to moderate
exposure to distributed
computing

YOU UNDERSTAND:

 Software Development
 C# and .NET

 Network services

 Performance metrics and
optimization

 Distributed computing
 Parallelizing algorithms

 Partitioning data

 Jobs, tasks

To ensure that we all are speaking the same language

http://en.wikipedia.org/wiki/Image:Lab49_logo.png

 Technique of computing that:

 Unites many machines into a coordinated group

 Uses the group to execute code

 Balances workload across machines in the group

 Manages the lifetime of tasks and jobs

 Reduces bottlenecks on computation

 Loose synonyms:

 Grid-, distributed-, cloud-computing, HPC

 Server product that:

 Unites many machines into a coordinated group

 Uses the group to store granular data

 Balances data across all machines in group

 Diffuses I/O across all machines in group

 Reduces bottlenecks on data movement

 Loose synonyms:

 Data grid, data fabric

 There isn’t a brief, widely used acronym for
distributed cache products.

 So, here’s a makeshift one for this talk.

SCALABILITY

 Ensure that an HPC system
can tolerate:
 Increases in client count

 Increases in data sizes

 Increases in data movement

 Increases in concurrent apps

 Adds bandwidth and load-
balancing to data sources

 To be discussed

RELIABILITY

 Ensure that an HPC system
can tolerate:
 Hardware failure

 Network failure

 Server software failure

 Denial of service

 Adds self-healing and
resilience to data sources

 To be omitted

 Though HPC has so far been adopted faster
than DCP, they will necessarily rise together

 Distinct best-of-breed products in DCP and HPC
today are likely to coalesce in the coming years

 The reason :

 Parallel clients deluge central data sources

 Many hands make light work (but heavy load)

 HPC creates a problem that DCP nicely solves

 An infinite line waits to get a pint
of stout from a single tap
 Process: get glass, pour body, let

settle, pour head, serve glass, accept
payment, make change, collect tip

 An extra bartender or two
speeds service as they can serve
multiple customers at once
 But more creates contention at tap

 Adding more taps permit more
bartenders with less contention
and faster service
 Parallelism only scales when both

bartenders and taps scale

To present motivating examples within financial services

http://en.wikipedia.org/wiki/Image:Lab49_logo.png

 Financial services is replete with “delightfully
parallel” apps, for example:

 Portfolio Management

 Fixed Income Pricing

 Reporting

 Simulation and Back-testing

 When run in parallel, these apps generate a
lot of I/O, esp. from central data sources

Portfolio Management

foreach account:
foreach market:

calculate ideal exposure
allocate ideal exposure
calculate ideal trades
adjust trades (cost/risk)

adjust trades (cost/risk)
hedge trades

A hedge fund manages a
corpus of investment portfolios
for its client accounts, each
comprised of many asset types.
Throughout each trading day,
as markets open and close and
as new market information is
collected, portfolios are
rebalanced, re-priced, and re-
hedged.

Fixed Income Pricing

foreach bond:
foreach path:

foreach month:
calculate dependencies
calculate price

aggregate price
aggregate paths

An investment bank furnishes
pricing information to traders
and counterparties for fixed
income instruments.
Throughout the trading day,
market information is revealed
that affects the pricing of fixed
income instruments and
structured products.

Reporting

foreach account:
foreach report:

foreach report element:
calculate element

calculate report
format report
export report

assemble report package

Financial services firms
generate customized reports
for both internal and external
use. Whether daily, monthly, or
quarterly, reports create
significant demand for data.

Simulation and
Back-Testing

foreach configuration:
foreach instrument:

foreach period:
calculate model value
calculate model error

aggregate model value
aggregate model error

aggregate model error
aggregate model error

Any financial services firm that
does any level of quantitative
analysis and modeling will
require the ability to simulate
models and back-test them
against historical data. This
often involves executing a
model over many years’ worth
of data.

Many Units of
Parallelism

• Accounts

• Instruments

• Samples

• Paths

• Shocks

• Periods

• Parameters

Large Volume of
Input Data

• Reference
data

• Indicative data

• Parameters

Input Data Is
Overlapping

• Reference
data and
indicative
data, for
example,
required
across many
apps, not just
one

SHARED DATA

 Examples:
 Market quotes

 Yield curves

 Exchange rates

 Reference data

 Model parameters

 Characteristics:
 Often bandwidth hot spots

 Cache-friendly

SPECIFIC DATA

 Examples:
 Account details

 Portfolio allocations

 Bond structure

 Prepayment data

 Intermediate state

 Characteristics:
 Often server hot spot

 Cache-insensitive

 As we exploit parallelism to relieve workload
bottlenecks on CPU, additional parallelism
creates bottlenecks on central data sources

 Non-replicated file systems, web servers, and
databases get deluged in HPC scenarios

 Clusters or load-balanced replicas of the above
reach early scalability limits and create complexity
in both IT management and software design

 Read-Write patterns are particularly challenging

Scaling Up

• Means getting bigger,
faster hardware
better able to tolerate
the workload.

• Offers limited scalable
processing power and
memory, but no
scalable bandwidth.

Scaling Away

• Means implementing
opportunistic
multilevel caching to
protect critical
resources from
repeated reads.

• When clients
repeatedly ask for the
same pieces of data,
information is
returned from nearest
cache instead of
critical resources.

Scaling Out

• Means enlisting more
machines working
together to share in
the workload.

• Offers unlimited
scalable processing
power and limited
scalable memory and
bandwidth

 Represents a combination of scaling up,
away, and out techniques

 Leverages the additive bandwidth, memory, and
processing power of multiple machines

 Offers a simplified programming model over
replicated server or local copy models

To get up and running

http://en.wikipedia.org/wiki/Image:Lab49_logo.png

 A varied number of products at different price
points and with different feature sets:

Product Price Size Complex Feature

Alachisoft NCache $ & ! *

GemStone GemFire $$$ && !! **

GigaSpaces XAP $$$ &&& !! ***

IBM ObjectGrid $$$ &&& !!! **

Oracle Coherence $$$ && !! **

ScaleOut StateServer $$ & ! *

 Introducing ScaleOut StateServer (SOSS)

 Written in C/C++ for Windows, offers .NET API

 Straightforward install (either server or client)

 Comparatively:

 Offers similar interfaces and features as others

 Offers more narrow focus on fast/simple DCP

 Offers advanced features and fault tolerance
support but that’s out of scope for this session

 SOSS runs on each server node

 Server nodes discover each other by multicast

 Once discovered, nodes talk P2P for heartbeat
and object balancing

 Cache exposed as aggregate local memory

 SOSS assigns objects to particular nodes

 SOSS creates replicas of objects

 SOSS routes requests to nodes owning objects

 SOSS caches objects at multiple points

 If you leverage dictionaries and hash tables,
you’ll find DCP APIs simple to use

 Objects in the cache have keys and values

 System has basic CRUD semantics:

 Create (aka Add, Insert, Put, Store)

 Retrieve (aka Read, Select, Get, Peek)

 Update

 Delete (aka Remove, Erase)

static void Main(string[] args) {
// Initialize object to be stored:
SampleClass sampleObj = new SampleClass();
sampleObj.var1 = "Hello, SOSS!";

// Create a cache:
SossCache cache = CacheFactory.GetCache("myCache");

// Store object in the distributed cache:
cache["myObj"] = sampleObj;

// Read and update object stored in cache:
SampleClass retrievedObj = null;
retrievedObj = cache["myObj"] as SampleClass;
retrievedObj.var1 = "Hello, again!";
cache["myObj"] = retrievedObj;

// Remove object from the cache:
cache.Remove("myObj");

}

static void Main(string[] args){
// Initialize object to be stored:
SampleClass sampleObj = new SampleClass();
sampleObj.var1 = "Hello, SOSS!";

// Create a data accessor:
CachedDataAccessor cda = new CachedDataAccessor(“mykey”);

// Store object in ScaleOut StateServer (SOSS):
cda.Add(sampleObj, 0, false);

// Read and update object stored in SOSS:
SampleClass retrievedObj = null;
retrievedObj = (SampleClass) cda.Retrieve(true);
retrievedObj.var1 = "Hello, again!";
cda.Update(retrievedObj);

// Remove object from SOSS:
cda.Remove();

}

KEYS

 Uniquely identify an object
within the cache

 SOSS natively uses 256-bit
binary keys, but:
 GUID = key

 SHA-256(string) = key

 SHA-256(*) = key
 256-bit is an astronomically

large keyspace
 Unique value for every ~85

atoms in the universe

VALUES

 The data being stored and
identified by a key

 SOSS stores values as
opaque BLOBs
 Can be of arbitrary length (but

performance varies)

 Most values are created via
serialization

KEYS

 Choose meaningful keys
 Use a naming convention

such as URN or URL
 Use namespaces where

appropriate
 Use namespaces to

differentiate usage policy

VALUES

 Choose an appropriate
granularity for objects

 Make read-only as many
objects as possible

 Avoid designs that create
hot objects

To measure distributed cache performance

http://en.wikipedia.org/wiki/Image:Lab49_logo.png

 Several variables affect
cache performance

 They are interactive
 That said, a lot more

bandwidth and nodes
will go a long way

Network
Bandwidth

Object Size

Object
Count

Client to
Node Ratio

Serializ-
ation

Read/Write
Pattern

 This simulation reads many distinct objects
from many readers simultaneously

 Similar to many pricing workers reading
information about distinct instruments

 With read caching turned off, it should
behave similar to database

 Without SQL and multirow results, of course

 With hit on clustered index seek, rowcount = 1

Uniform Read (n obj)
Cache Off
Time to Read

There is some super-linear
performance on smaller
objects, but it flattens out as
objects get larger.

0

1

10

100

1,000

10,000

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

E
la

p
s
e
d

/I
te

ra
ti

o
n

 (
m

s
e
c
)

Item Size (bytes)

2x1 2x2

2x3 2x4

Uniform Read (n obj)
Cache Off
Throughput

Viewed as throughput, we can
see that network bandwidth
becomes a limiting factor.

10

100

1,000

10,000

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Item Size (bytes)

2x1 2x2
2x3 2x4

 This simulation reads a single object from
many readers simultaneously

 Similar to many pricing workers reading the same
common object, such as yield curve

 With read caching turned off, it should
behave similar to database

 Note that with caching off, requests are being
routed to host that masters the requested object

Uniform Read (1 obj)
Cache Off
Time to Read

These results are very similar to
the database model, but with
slightly worse performance due
to contention at node that
owns the master replica of the
object being requested.

0

1

10

100

1,000

10,000

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

E
la

p
s
e
d

/I
te

ra
ti

o
n

 (
m

s
e
c
)

Item Size (bytes)

2x1 2x2
2x3 2x4

Uniform Read (1 obj)
Cache Off
Throughput

Again, this is performance
consistent, though slower, than
the previous model.

10

100

1,000

10,000

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Item Size (bytes)

2x1 2x2
2x3 2x4

 This simulation reads a single object from
many readers simultaneously

 Similar to many pricing workers reading the same
common object, such as yield curve

 With read caching turned on, we should see
much better performance

 Note that with caching on, requests can be
handled by any node that has it in cache

 Some overhead attributed to version checking

Uniform Read (1 obj)
Cache On
Time to Read

As expected, read times are flat
up to a certain threshold as
objects are returned from
cache. Performance suddenly
gets worse when the object
sizes get large enough to
saturate the network
bandwidth and cause read
queuing.

0

1

10

100

1,000

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

E
la

p
s
e
d

/I
te

ra
ti

o
n

 (
m

s
e
c
)

Item Size (bytes)

1x1 1x2 1x3
1x4 2x1 2x2

Uniform Read/Write
Cache On
Time to Read

This shows the affect of
periodic updates on the
hotspot object. The
performance threshold is
reduced due to cache
invalidation.

0

1

10

100

1,000

10,000

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

E
la

p
s
e
d

/I
te

ra
ti

o
n

 (
m

s
e
c
)

Item Size (bytes)

2x1 2x2

2x3 2x4

To squeeze further performance and functionality from caches

http://en.wikipedia.org/wiki/Image:Lab49_logo.png

 The performance advantage of compression
is highly contingent on object size,
compression ratio, and client CPU overhead

 For fast clients, large compressible data streams,
compression can show significant gains

 For small objects, effect can be counterproductive

 Beyond the object size threshold (usually
between 100k and 200k), object
segmentation can be very advantageous

 When serialized stream is greater than threshold,
object is split, pieces stored with nonce keys

 A directory of the nonce keys is stored under the
original object key

 Safety features such as hashes/checksums push
up the segmentation threshold

 As DCP evolve a greater role at financial
services institutions, a question usually arises:

 Should applications own their own cache or
should all share a common cache?

 Answer depends on:

 Technology policy

 Security requirements

 Network and product limitations

 Several strategies for using string-based keys

 URN-based locators

▪ Ex: “urn:lab49-com:equity:us:msft:close;2008-03-12”

▪ Ex: “urn:uuid:2af640cb-098f-4acd-9be3-9a9bd4673983”

 Fully qualified assembly names

▪ Ex: “System, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089”

 Namespaces can insulate key collisions
between applications or object types

To find out more information about distributed caches

http://en.wikipedia.org/wiki/Image:Lab49_logo.png

 ScaleOut Software
 http://www.scaleoutsoftware.com/

 Industry Team Blog
 http://blogs.msdn.com/fsdpe

 Microsoft in Financial Services
 http://www.microsoft.com/financialservices

 Technology Community for Financial Services
 http://www.financialdevelopers.com

 Sign up to receive the free quarterly FS Developer
Newsletter on top left hand side of site

http://www.scaleoutsoftware.com/
http://blogs.msdn.com/fsdpe
http://www.microsoft.com/financialservices
http://www.financialdevelopers.com/

 Marc Jacobs, Director

 mail: marcja@lab49.com

 blog: http://marcja.wordpress.com

 Lab49, Inc.

 mail: info@lab49.com

 site: http://www.lab49.com

 blog: http://blog.lab49.com

mailto:marcja@lab49.com
http://marcja.wordpress.com/
mailto:info@lab49.com
http://www.lab49.com/
http://blog.lab49.com/

