
A Developer’s Guide to Unleashing Your Data 
in High-Performance Applications

Marc Jacobs
Director

marcja@lab49.com

http://en.wikipedia.org/wiki/Image:Lab49_logo.png


To make sure that you’re in the right room
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 From the software developer’s view:

 The basics of distributed caches

▪ What are they? What services do they provide? What 
purpose do they serve? How do they function?

 Use cases within financial services

▪ What types of applications benefit from distributed 
caches? How can they be integrated in an architecture?

 Performance evaluation and optimization

▪ Methodology, performance variables, some results



 Given there is more content than time, we 
will not cover:

 Detailed vendor analysis and feature comparisons

 Detailed inner architecture of distributed caches

 Specifying, deploying, or managing caches

 Reliability and fault tolerance features

 Usage of advanced, product-specific developer 
features



YOU ARE:

 A software developer
 …in financial services 

 …writing time-sensitive 
applications in .NET

 …with little to no exposure to 
distributed caches

 …with little to moderate 
exposure to distributed 
computing

YOU UNDERSTAND:

 Software Development
 C# and .NET

 Network services

 Performance metrics and 
optimization

 Distributed computing
 Parallelizing algorithms

 Partitioning data

 Jobs, tasks



To ensure that we all are speaking the same language

http://en.wikipedia.org/wiki/Image:Lab49_logo.png


 Technique of computing that:

 Unites many machines into a coordinated group

 Uses the group to execute code

 Balances workload across machines in the group

 Manages the lifetime of tasks and jobs

 Reduces bottlenecks on computation

 Loose synonyms:

 Grid-, distributed-, cloud-computing, HPC



 Server product that:

 Unites many machines into a coordinated group

 Uses the group to store granular data

 Balances data across all machines in group

 Diffuses I/O across all machines in group

 Reduces bottlenecks on data movement

 Loose synonyms:

 Data grid, data fabric



 There isn’t a brief, widely used acronym for 
distributed cache products.

 So, here’s a makeshift one for this talk.



SCALABILITY

 Ensure that an HPC system 
can tolerate:
 Increases in client count

 Increases in data sizes

 Increases in data movement

 Increases in concurrent apps

 Adds bandwidth and load-
balancing to data sources

 To be discussed

RELIABILITY

 Ensure that an HPC system 
can tolerate:
 Hardware failure

 Network failure

 Server software failure

 Denial of service

 Adds self-healing and 
resilience to data sources

 To be omitted



 Though HPC has so far been adopted faster 
than DCP, they will necessarily rise together

 Distinct best-of-breed products in DCP and HPC 
today are likely to coalesce in the coming years

 The reason :

 Parallel clients deluge central data sources

 Many hands make light work (but heavy load)

 HPC creates a problem that DCP nicely solves



 An infinite line waits to get a pint 
of stout from a single tap
 Process: get glass, pour body, let 

settle, pour head, serve glass, accept 
payment, make change, collect tip

 An extra bartender or two 
speeds service as they can serve 
multiple customers at once
 But more creates contention at tap

 Adding more taps permit more 
bartenders with less contention 
and faster service
 Parallelism only scales when both 

bartenders and taps scale



To present motivating examples within financial services
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 Financial services is replete with “delightfully 
parallel” apps, for example:

 Portfolio Management

 Fixed Income Pricing

 Reporting

 Simulation and Back-testing

 When run in parallel, these apps generate a 
lot of I/O, esp. from central data sources



Portfolio Management

foreach account:
foreach market:

calculate ideal exposure
allocate ideal exposure
calculate ideal trades
adjust trades (cost/risk) 

adjust trades (cost/risk) 
hedge trades

A hedge fund manages a 
corpus of investment portfolios 
for its client accounts, each 
comprised of many asset types. 
Throughout each trading day, 
as markets open and close and 
as new market information is 
collected, portfolios are 
rebalanced, re-priced, and re-
hedged.



Fixed Income Pricing

foreach bond:
foreach path:

foreach month:
calculate dependencies
calculate price

aggregate price
aggregate paths

An investment bank furnishes 
pricing information to traders 
and counterparties for fixed 
income instruments. 
Throughout the trading day, 
market information is revealed 
that affects the pricing of fixed 
income instruments and 
structured products.



Reporting

foreach account:
foreach report:

foreach report element:
calculate element

calculate report
format report
export report

assemble report package

Financial services firms 
generate customized reports 
for both internal and external 
use. Whether daily, monthly, or 
quarterly, reports create 
significant demand for data.



Simulation and 
Back-Testing

foreach configuration:
foreach instrument:

foreach period:
calculate model value
calculate model error

aggregate model value
aggregate model error

aggregate model error
aggregate model error

Any financial services firm that 
does any level of quantitative 
analysis and modeling will 
require the ability to simulate 
models and back-test them 
against historical data. This 
often involves executing a 
model over many years’ worth 
of data.



Many Units of 
Parallelism

• Accounts

• Instruments

• Samples

• Paths

• Shocks

• Periods

• Parameters

Large Volume of 
Input Data

• Reference 
data

• Indicative data

• Parameters

Input Data Is 
Overlapping

• Reference 
data and 
indicative 
data, for 
example, 
required 
across many 
apps, not just 
one



SHARED DATA

 Examples:
 Market quotes

 Yield curves

 Exchange rates

 Reference data

 Model parameters

 Characteristics:
 Often bandwidth hot spots

 Cache-friendly

SPECIFIC DATA

 Examples:
 Account details

 Portfolio allocations

 Bond structure

 Prepayment data

 Intermediate state

 Characteristics:
 Often server hot spot

 Cache-insensitive



 As we exploit parallelism to relieve workload 
bottlenecks on CPU, additional parallelism 
creates bottlenecks on central data sources

 Non-replicated file systems, web servers, and 
databases get deluged in HPC scenarios

 Clusters or load-balanced replicas of the above 
reach early scalability limits and create complexity 
in both IT management and software design

 Read-Write patterns are particularly challenging



Scaling Up 

• Means getting bigger, 
faster hardware 
better able to tolerate 
the workload. 

• Offers limited scalable 
processing power and 
memory, but no 
scalable bandwidth.

Scaling Away 

• Means implementing 
opportunistic 
multilevel caching to 
protect critical 
resources from 
repeated reads. 

• When clients 
repeatedly ask for the 
same pieces of data, 
information is 
returned from nearest 
cache instead of 
critical resources. 

Scaling Out 

• Means enlisting more 
machines working 
together to share in 
the workload. 

• Offers unlimited 
scalable processing 
power and  limited 
scalable memory and 
bandwidth



 Represents a combination of scaling up, 
away, and out techniques

 Leverages the additive bandwidth, memory, and 
processing power of multiple machines

 Offers a simplified programming model over 
replicated server or local copy models



To get up and running
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 A varied number of products at different price 
points and with different feature sets:

Product Price Size Complex Feature

Alachisoft NCache $ & ! *

GemStone GemFire $$$ && !! **

GigaSpaces XAP $$$ &&& !! ***

IBM ObjectGrid $$$ &&& !!! **

Oracle Coherence $$$ && !! **

ScaleOut StateServer $$ & ! *



 Introducing ScaleOut StateServer (SOSS)

 Written in C/C++ for Windows, offers .NET API

 Straightforward install (either server or client)

 Comparatively:

 Offers similar interfaces and features as others

 Offers more narrow focus on fast/simple DCP

 Offers advanced features and fault tolerance 
support but that’s out of scope for this session



 SOSS runs on each server node

 Server nodes discover each other by multicast

 Once discovered, nodes talk P2P for heartbeat 
and object balancing

 Cache exposed as aggregate local memory

 SOSS assigns objects to particular nodes

 SOSS creates replicas of objects

 SOSS routes requests to nodes owning objects

 SOSS caches objects at multiple points



 If you leverage dictionaries and hash tables, 
you’ll find DCP APIs simple to use

 Objects in the cache have keys and values

 System has basic CRUD semantics:

 Create (aka Add, Insert, Put, Store)

 Retrieve (aka Read, Select, Get, Peek)

 Update

 Delete (aka Remove, Erase)



static void Main(string[] args) {
// Initialize object to be stored: 
SampleClass sampleObj = new SampleClass();
sampleObj.var1 = "Hello, SOSS!";

// Create a cache:
SossCache cache = CacheFactory.GetCache("myCache");

// Store object in the distributed cache:
cache["myObj"] = sampleObj;

// Read and update object stored in cache:
SampleClass retrievedObj = null;
retrievedObj = cache["myObj"] as SampleClass;
retrievedObj.var1 = "Hello, again!";
cache["myObj"] = retrievedObj;

// Remove object from the cache:
cache.Remove("myObj");

}



static void Main(string[] args){
// Initialize object to be stored:
SampleClass sampleObj = new SampleClass();
sampleObj.var1 = "Hello, SOSS!";

// Create a data accessor:
CachedDataAccessor cda = new CachedDataAccessor(“mykey”);

// Store object in ScaleOut StateServer (SOSS):
cda.Add(sampleObj, 0, false);

// Read and update object stored in SOSS:
SampleClass retrievedObj = null;
retrievedObj = (SampleClass) cda.Retrieve(true);
retrievedObj.var1 = "Hello, again!";
cda.Update(retrievedObj);

// Remove object from SOSS:
cda.Remove();

}



KEYS

 Uniquely identify an object 
within the cache

 SOSS natively uses 256-bit 
binary keys, but:
 GUID = key

 SHA-256(string) = key

 SHA-256(*) = key
 256-bit is an astronomically 

large keyspace
 Unique value for every ~85 

atoms in the universe

VALUES

 The data being stored and 
identified by a key

 SOSS stores values as 
opaque BLOBs
 Can be of arbitrary length (but 

performance varies)

 Most values are created via 
serialization



KEYS

 Choose meaningful keys
 Use a naming convention 

such as URN or URL
 Use namespaces where 

appropriate
 Use namespaces to 

differentiate usage policy

VALUES

 Choose an appropriate 
granularity for objects

 Make read-only as many 
objects as possible

 Avoid designs that create 
hot objects



To measure distributed cache performance
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 Several variables affect 
cache performance

 They are interactive
 That said, a lot more 

bandwidth and nodes 
will go a long way

Network 
Bandwidth

Object Size

Object 
Count

Client to 
Node Ratio

Serializ-
ation

Read/Write 
Pattern



 This simulation reads many distinct objects 
from many readers simultaneously

 Similar to many pricing workers reading 
information about distinct instruments

 With read caching turned off, it should 
behave similar to database

 Without SQL and multirow results, of course

 With hit on clustered index seek, rowcount = 1



Uniform Read (n obj)
Cache Off
Time to Read

There is some super-linear 
performance on smaller 
objects, but it flattens out as 
objects get larger.
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Uniform Read (n obj)
Cache Off
Throughput

Viewed as throughput, we can 
see that network bandwidth 
becomes a limiting factor.
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 This simulation reads a single object from 
many readers simultaneously

 Similar to many pricing workers reading the same 
common object, such as yield curve

 With read caching turned off, it should 
behave similar to database

 Note that with caching off, requests are being 
routed to host that masters the requested object



Uniform Read (1 obj)
Cache Off
Time to Read

These results are very similar to 
the database model, but with 
slightly worse performance due 
to contention at node that 
owns the master replica of the 
object being requested.
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Uniform Read (1 obj)
Cache Off
Throughput

Again, this is performance 
consistent, though slower, than 
the previous model.
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 This simulation reads a single object from 
many readers simultaneously

 Similar to many pricing workers reading the same 
common object, such as yield curve

 With read caching turned on, we should see 
much better performance

 Note that with caching on, requests can be 
handled by any node that has it in cache

 Some overhead attributed to version checking



Uniform Read (1 obj)
Cache On
Time to Read

As expected, read times are flat 
up to a certain threshold as 
objects are returned from 
cache. Performance suddenly 
gets worse when the object 
sizes get large enough to 
saturate the network 
bandwidth and cause read 
queuing.
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Uniform Read/Write
Cache On
Time to Read

This shows the affect of 
periodic updates on the 
hotspot object. The 
performance threshold is 
reduced due to cache 
invalidation.
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To squeeze further performance and functionality from caches
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 The performance advantage of compression 
is highly contingent on object size, 
compression ratio, and client CPU overhead

 For fast clients, large compressible data streams, 
compression can show significant gains

 For small objects, effect can be counterproductive



 Beyond the object size threshold (usually 
between 100k and 200k), object 
segmentation can be very advantageous

 When serialized stream is greater than threshold, 
object is split, pieces stored with nonce keys

 A directory of the nonce keys is stored under the 
original object key

 Safety features such as hashes/checksums push 
up the segmentation threshold



 As DCP evolve a greater role at financial 
services institutions, a question usually arises:

 Should applications own their own cache or 
should all share a common cache?

 Answer depends on:

 Technology policy

 Security requirements

 Network and product limitations



 Several strategies for using string-based keys

 URN-based locators

▪ Ex: “urn:lab49-com:equity:us:msft:close;2008-03-12”

▪ Ex: “urn:uuid:2af640cb-098f-4acd-9be3-9a9bd4673983”

 Fully qualified assembly names

▪ Ex: “System, Version=1.0.5000.0, Culture=neutral, 
PublicKeyToken=b77a5c561934e089”

 Namespaces can insulate key collisions 
between applications or object types



To find out more information about distributed caches
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 ScaleOut Software
 http://www.scaleoutsoftware.com/

 Industry Team Blog
 http://blogs.msdn.com/fsdpe

 Microsoft in Financial Services
 http://www.microsoft.com/financialservices

 Technology Community for Financial Services
 http://www.financialdevelopers.com

 Sign up to receive the free quarterly FS Developer 
Newsletter on top left hand side of site

http://www.scaleoutsoftware.com/
http://blogs.msdn.com/fsdpe
http://www.microsoft.com/financialservices
http://www.financialdevelopers.com/


 Marc Jacobs, Director

 mail: marcja@lab49.com

 blog: http://marcja.wordpress.com

 Lab49, Inc.

 mail: info@lab49.com

 site: http://www.lab49.com

 blog: http://blog.lab49.com
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